## Kinematics Worksheet 3

1. Electrons move through a certain electric circuit at an average speed of $1.1 \times 10^{-2} \mathrm{~m} / \mathrm{s}$. How long (in minutes) does it take an electron to traverse 1.5 m of wire in the filament of a light bulb?
2. A cheetah is hunting. Its prey runs for 3.0 s at a constant velocity of $+9.0 \mathrm{~m} / \mathrm{s}$. Starting from rest, what constant acceleration must the cheetah maintain in order to run the same distance as its prey runs in the same time?
3. An Olympic-class sprinter starts a race with an acceleration of $4.50 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is her speed 2.40 s later?
(b) Sketch a position-time graph for the sprinter.
4. A well-thrown ball is caught in a well-padded mitt. If the acceleration of the ball is $-2.10 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$, and $1.85 \times 10^{-3} \mathrm{~s}$ elapses from the time the ball first touches the mitt until it stops, what was the initial velocity of the ball?
5. A bullet in a gun is accelerated from the firing chamber to the end of the barrel at an average rate of $6.20 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$ for $8.10 \times 10^{-4} \mathrm{~s}$. What is its muzzle velocity, that is, its final velocity?
6. A jet is taking off from the deck of an aircraft carrier. Starting from rest, the jet is catapulted with a constant acceleration of $+31 \mathrm{~m} / \mathrm{s}^{2}$ along a straight line and reaches a velocity of $+62 \mathrm{~m} / \mathrm{s}$. Find the displacement of the jet.
7. A ball is dropped from a building and takes 6.8 s to hit the ground.
(a) What is the height of the building?
(b) What is the velocity of the ball when it hits the ground?
8. A bullet is shot straight up in to the air from ground level at a velocity of $234 \mathrm{~m} / \mathrm{s}$.
(a) How high does the bullet go?
(b) What is the velocity of the bullet when it hits the ground?
(c) How long is the bullet in the air?
9. A dynamite blast at a quarry launches a chunk of rock straight upward, and 2.0 s later it is rising at a speed of $15 \mathrm{~m} / \mathrm{s}$. Assuming air resistance has no effect on the rock, calculate its speed at launch.
10. A ball is thrown vertically upward, which is the positive direction. A little later it returns to its point of release. The ball is in the air for a total time of 8.0 s . What is its initial velocity? Neglect air resistance.
11. An astronaut on a distant planet wants to determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of $+15 \mathrm{~m} / \mathrm{s}$ and measures a time of 20.0 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet?
12. A hot-air balloon is rising upward with a constant speed of $2.50 \mathrm{~m} / \mathrm{s}$. When the balloon is 3.00 m above the ground, the balloonist accidentally drops a compass over the side of the balloon. How much time elapses before the compass hits the ground?
13. A woman on a bridge 75.0 m high sees a raft floating at a constant speed on the river below. Trying to hit the raft, she drops a stone from rest when the raft has 7.00 m more to travel before passing under the bridge. The stone hits the water 4.00 m in front of the raft. Find the speed of the raft.
14. Two identical pellet guns are fired simultaneously from the edge of a cliff. These guns impart an initial speed of $30.0 \mathrm{~m} / \mathrm{s}$ to each pellet. Gun A is fired straight upward, with the pellet going up and then falling back down, eventually hitting the ground beneath the cliff. Gun B is fired straight downward. In the absence of air resistance, how long after pellet B hits the ground does pellet A hit the ground?
15. A cement block accidentally falls from rest from the ledge of a 53.0 m high building. When the block is 14.0 m above the ground, a man, 2.00 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way?
16. A ball is thrown straight upward. At 4.00 m above its launch point, the ball's speed is onehalf its launch speed. What maximum height above its launch point does the ball attain?
17. A bus makes a trip according to the following position-time graph.

(a) What is the average velocity (magnitude and direction) of the bus during each of the segments A, B, and C? Express your answers in $\mathrm{km} / \mathrm{h}$.
(b) What is the average velocity for the entire trip?
18. A snowmobile moves according to the following velocity-time graph.

(a) What is the snowmobile's average acceleration during each of the segments A, B, and C?
(b) What is the snowmobile's average acceleration over the whole trip?
(c) What is the displacement of the snowmobile over the whole trip?
19. At the beginning of a basketball game, a referee tosses the ball straight up with a speed of $4.6 \mathrm{~m} / \mathrm{s}$. A player cannot touch the ball until after it reaches its maximum height and begins to fall down. What is the minimum time that a player must wait before touching the ball?
20. Two cars cover the same distance in a straight line. Car A covers the distance at a constant velocity. Car B starts from rest and maintains a constant acceleration. Both cars cover a distance of 460 m in 210 s . Assume that they are moving in the +x direction. Determine
(a) the constant velocity of car A.
(b) the final velocity of car B.
(c) the acceleration of car B.
